7" AD=A116 813 PITTSBURGH UNIV PA DEPT OF MATHEMATICS AND STATISTICS F/6 12/1
COMPARING COHERENT SYSTEMS. (U)
MAY 82 H W BLOCKs W D BORSES NO0018~76=C~0839
UNCLASSIFIED 82-09 ;

N




COMPARING COHERENT SYSTEMS

Henry W. Block1’3 1

AD A116813

and

Wagner de Souza Botgesl’z’4

University of Pittsburgh

May 1982

Technical Report No. 82-09

Center for Multivariate Analysis

e )
University of Pittsburgh ( JuL1 3 1982° .

Ninth Floor, Schenley Hall
Pittsburgh, PA 15260

1. Department of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260.

2. Instituto de Matemitica e Estat{stica, Universidade de Sdo Paulo,
caixa postal 20570 ag. Iguatemi, 05508 Sdo Paulo, SP, Brasil.

3. Supported by ONR Contract N00014-76-C-0839.

4. Supported in part by Conselho Nagional de Desenvolvimento Cientf&ico
e Tecnolégico (CNPq), processo n . 200175-8L. .

DT FILE COPY

Approved for public release;
Distribution Unlimited




COMPARING COHERENT SYSTEMS

by
Henry W, Block
and

Wagner de Souza Borges

\ ABSTRACT
N

It is a well known engineering principle that "redundancy at the
component level is more effective than redundancy at the system level."
Here, redundancy simply means components are connected in parallel and
the principle results from comparing the systems obtained when this par-
allel protocol is applied both at the component and system levels. It
is shown in this paper that if parallel or series protocols are ruled out,
corresponding versions of the above principle are not possible. This
question 1s examined both in structural as well as in reliability (stochas-

A

tic) terms.

AMS 1970 subject classification: Primary 62N05; Secondary 60K1lQ.
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1. INTRODUCTION

Let S={0,1,...,m} denote the set of all possible states of both the
system and its components, and let €= {1,...,n} be the component set. The
vector x= (xl, ces ,xn) es® represents the situation where components 1,...,n
are in states XpseeesXy respectively. In particular we write k= (k,...,k)

for ke S.

The state of the system is a function of the component state vector
Xe€ s". A function ¢: S” + S is called a multistate system structure (MSS)
of order n provided it is nondecreasing, i.e. ¢(x) < ¢(y) whenever xif_ Yy

for all 1eC (x<Yy).

We also use throughout the paper the following notational convention.
n k
(1.1) Notation. For x - (xil" "'xin) ceR ,i=]1,...,k and y: R + R we
n
let Y(x;,..05%) O T RTRRE W P 1C YT SUTRRE X )R

Note that ¢ is an MSS of order n if and only if

(1.2) ¢( max x,) > max ¢(x,) for all x.,..., es® and k>2,
1<i<k * T 1cdck + 15

or equivalently

(1.3) ¢( min x ) < min ¢(x;) for all x.,..., €s" and k>2,
1<i<k ¥ T 1dsk * 1000 %

where max x, ( min 51) is the vector of coordinatewise maximums (minimums)., @

1<i<k 1<4i<k _ ‘
Inequality (1.2) expresses mathematically a well known engineering principle 57—

that states that "redundancy at the component level is more effective than (]
redundancy at the system level"”, and (1.3) expresses & related dual ——-————‘
principle. These principles are presented in their simplest form in Barlow :
and Proschan [1]. T e Codes |
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We recall that the MSS of order k defined by ¥(x) = max x, (¥(x) =min x,)
1<i<k 1<i<k

for xe€ s¥ 1s called a parallel (series) system and note that using (1.1)

the principle expressed by (1.2) ((1.3)) can be rewritten as fcilows. We express
it in this form for ease in describing our subsequent results.
(1.4) Principle. If ¢ is an MSS of order n and ¢ is a parallel (seriesg) sys~

tem of order k, then the MSS of order kxn defined by
) n
¢(_¢_(51,...,_7q‘)) for 51,...,_x_kss

is uniformly better (worse) than the MSS of order kxn defined by

¢(¢(§1).---,¢(5k)5 for 3_1,...,_7,1‘es“. -

In this paper, we will consider the question of which of the two
MSS's of order kxn defined in (1.4) is uniformly better. As an example
to better visualize the two competing alternatives, assume that
¢(xl,x2,x3) -min{xl, max{xz,x3}} and w(yl,yz.y3,y4) -max{yl, min{yl,yz,yS}}

e{0,1},1=1,2,3, 3§=1,2,3,4. Since ¢ and ¥ can be repre-

for xi,y:l
sented respectively as
2 1
]'r*-——o———-“' , Q
1
—O ] I and ——] —_
3 2 3 4
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$ ¥

Figure (1.5)

[y

the two alternatives are to build either the system illustrated in Figure

1.6 or in Figure 1.7.

PPN S

TSN




Figure 1.6

Figure 1.7

The solution to this problem in the binary setting, i.e. when S= {0,1}
is given in Section 2. This is that if series and parallel systems are
ruled out, neither of the resulting systems is uniformly better than the
other. This is our main result which is given by Lemma 2.2. An interest-

ing consequence of this result is given in Theorem 2.3.
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In Section 3 we consider the problem in the multistate setting and
a weaker result 1s given in Proposition 3.2. An example is given to show
that this cannot be improved upon in general but, if the specialized
type of MSS of Barlow and Wu (2] is considered, a direct analog of the
binary result is obtainable. This is given in Proposition 3.4.

Finally in Section 4 we comment on the possibility of obtaining sto-
chastic versions of the results given in the previous section. It is j

shown that even in the binary case only weak results can be achieved.
2. BINARY SYSTEM STRUCTURES - }

In this section we consider the binary setting where S= {0,1} in

A,

which case an MSS is called a binary system structure (BSS). We assume

that any BSS ¢ of order n considered here is coherent in the sense that

for each 1€ C there is xe {0,1}" such that

(2.1) $(XyseeesX, 500X haeeesX )< LS SFTTRYE FUSTY ¥ FPCTRPRTL 9 B

We also recall from (1.3.6) of Barlow and Proschan [1] that if ¢ 1s a co-

herent BSS of order n, then ¢ has a representation of the form

¢(x) = min max x, for xe {0,1)"

1<)<k ieK, I
k ]
where v Kj-c and for all i+ Ki is not a subset of Kj' These sets
i=1

are called the min cut sets of ¢ and we refer the reader to Barlow and
Proschan [1] for properties of min cut sets and related notions.
Our main result will be a consequence of the following lemma.

(2.2) Lemma. Let ¢ and y be coherent BSS's of orders n>2 and k>2,

respectively.




1) If ¢ 1is not a parallel system and y is not a series system

then there exist X,,...,x in {0,1}" such that

SRR, 5+ -+ %)) > VCOEY oo a8 ()
2) If ¢ is not a series system and ¢ is not a parallel system

then there exist XyseeosXy in {0,1}n such that

¢(£(_x_19' .o !Ek)) < w(¢(_x_f,- L] ,¢(§)).

Proof. 1) We will construct Rysee X, in {0.1}‘l such that the desired

inequality holds. Since Y is not series, k> 2, and ¥ is coherent we

]

can find a min cut set K' which contains at least two elements. Further-

more since ¢ is not parallel, n>2, and ¢ is coherent there are at least

two different min cut sets of ¢; call them K: and Kg. Now for each ie¢ Kw,
¢ ¢ - n =
choose Kl or Kz and construct X (xu,...,xin) € {0,1} defining xij 0
if je K¢ and xij- 1 otherwise. Also construct x for 1ie K‘p so that not
" all of them are associated with only one of Ki or Kg. For 1&1(‘” define

-x-i--];- (1,...,1). Thus (¢(_:51),...,¢(:_ck)) € {O,I}k has zeros for all the

components 1€ K‘p, so that w(¢(§_1) sees ,¢(5k)) = (). On the other hand

xij-l for all 1¢K"’ so that A= {j: “’(xlj"zj"""‘kj)")}'

{3: xij =0 for all ie¢ K‘b} = K: n K;. But since Ki and K; are different
min cut sets, Ki n Kg must be strictly contained in Ki and K:. Thus A

does not contain any min cut set of ¢. Consequently ¢(31:_(51,...,§k)) =1,

2) The second part of the lemma is proven similarly.

171

The main result now follows easily.




(2.3) Theorem. Let ¢ and ¢ be coherent BSS's of orders n>2 and k>2

respectively. Then

¢(:P_(51.--.,§k)) - w(¢(§l),....¢(zq‘))

for all x, « {0,1}*, 1=1,...,k, if and only if ¢ and y are both

parallel or both series.

Proof. If the equality holds, it follows from Lemma 2.2 that:

(1) either ¢ is parallel or ¢ is series ; and

1) either ¢ is series or ¢ is parallel.
Combining (1) and (ii) we have that either ¢ and ¢ are series or ¢ and
y are parallel. Necessity of the equality follows immediately.

11/
(2.4) Note. In proving Theorem 2.3 we used the contrapositive form of
the two statements in Lemma 2.,2. These results are that under the assump-
tions of the lemma:
1) 1f 0(p(x e ax)) SR e s8(g)) for all xi,...,x € {0,1}", then
either ¢ is parallel or § is series.
11) 1 0 (B(x) 50 - 5K )) 2 V(0(x) »+18(x)) for all x),...,x € {0,1}", then
either ¢ is series or y is parallel.
It is easy to show that the converses of (i) and (ii) above also hold.

11/

We now obtain as a special case the result of Theorem 2.4 of Chapter 1

of Barlow and Proschan (1].

(2.5) Corollary. If ¢ is a coherent BSS of order n> 2, then

(1) ¢(max > max 4>(:_:1) for all 51,...,1_%‘&{0,1}“,

51)

1<i<k 1<i<k




(11) ¢(min x.) < min ¢(x,) for all X.,...,X € {0,1}".
l<i<k T Tlcdck o 1A

Equality holds in (1) ( (41) ) if and only if ¢ is parallel (series).
11/

(2.6) Note. The assumption of coherence in any of the results above where

the conclusion is that a BSS is series or parallel can actually be dropped

provided that the corresponding conclusion is weakened. For example in

Corollary 2.5 if ¢ is a BSS of order n> 2, equality in (1) implies

that ¢ is a parallel system of its relevant compoenents, i.e. ¢(x) -;xa:é*xi
€

*
for x¢ {O,I}n, where C 1s the set of components {¢C for which condition

(2.1) holds.
11/

3. MULTISTATE SYSTEM STRUCTURES

We now examine the extent to which the results in the previous sec-
tion can be generalized to the case of multistate system structures. Any
MSS ¢ considered in this section will further satisfy the following two
conditions: (1) ¢(k) =k for all ke S; and (ii) for each 1¢C and j2>1

there exists xe¢ s” such that

[}

¢(x1,...,xi_l,j-l,xi+l,...,xn)< ¢(x1,...,xi_1,j,xi_l,...,xn).

These will be called coherent MSS s of order n. This last concept coincides
with the middle and most reasonable multistate conceﬁk of coherence discussed
in Griffich [31].

A full generalization of Theorem 2.3 is not possible in the multi-
state case even under fairly strong conditions. We give however some

weaker results and an instructive counterexample.

The first result is in the spirit of the remarks in Note 2.4.




(3.1) Proposition. Let ¢ (¢) be a coherent MSS of order n(k). Then
S(R(x 5 e o5 )) < W(O(R)) 10 e 0(x,)) for all x;he.enX € s®

and all coherent MSS y (¢) of order k(n), if and only if ¢ (Y) is a

parallel (series) MSS.

Proof. The "if" part is straightforward. For the "only if" let
Y(x) = max x, for x¢ Sk. Obviously for this choice of y the reverse

1<i<k
inequality holds. Thus

¢ (max(x;,...,x ) = 12?23 =)
By the same proof as that of Proposition 2.2 of Griffith (1980) the
result follows. The proof of the dual result is similar.
11/
The following example shows that the direct generalization of Theorem

2.3 (and Note 2.4) is false even under stronger coherence assumptions.

(3.2) Example. Let ¢ and ¥ be identical MSS s defined as follows:
$(0,0) = ¢$(0,1) = $(1,0) = ¢(0,2) = ¢(2,0) =0, ¢(1,1)=1 and ¢(1,2) =¢(2,1) = ¢(2,2)=2,
Then it is not hard to see that ¢(_'y_(§_1,§2) -\p(¢(3:_1), ¢(§2)) for all
51,_:52 € {0,1,2}2. Moreover ¢ and § are coherent and even satisfy the
strong coherence assumption of Griffith (1980). However neither ¢ nor
y are either series or parallel.
111

If we consider the more restrictive multistate system structures

proposed by Barlow and Wu [2] we can obtain an :extention of Theorem 2.3.

An MMS ¢ of order n is of the type proposed by Barlow and Wu [2] (BW-MSS)

if 1t 1is of the form




¢$(x) = min max x, for Eesn,

1<i<k 1eK, *
K - 3
where u K,=C and for i%3j K, is not a subset of K,. These functions

jo1 1 3

are a particular subfamily of the coherent MSS's. Moreover for Xy binary,

¢ is a coherent BSS with min cut sets Kl,...,Kk.

(3.3) Proposition. Let ¢ and ¥ be BW-MSSs of orders n>2 and k> 2, respec-

tively. Then

AL A e s

¢(£(§1:'--:3&‘)) = IJ)(.¢(§_1).----,¢(§;k)) forail El"..’l‘ke sn

~

if and only if ¢ and y are both parallel or both series. The result re-

n
mains true if equality holds for all X;,...,X € “‘1’1‘2} » where 0 <k, <k, <m.

Proof. We need only show the result for the weaker assumption. As men-
tioned above ¢ and ¥ reduce to coherent BSS s when restricted to {0,1}n

and {O,I}k, respectively. We consider f(x) = (kz-kl)"1 (x—kl) so that when

X€ {kl,kz}, f(x) € {O,I}n.

To prove sufficiency note that

¢(_‘W_(_f_<_’_‘_l)’°-"_f_(§c))) = ¢(_f_(ﬂ(§_l’---)_x_k)))
= f(¢(3b_(g¢_1,---,§k)))
= () -0 (5))

PCEO(ED) 50 £ ()

VG 5o -0 (EEI -

¢(ﬂ(zlv'-~'zk)) - W(¢(x1)»--¢)¢(zk)) for all xlv""2k€ {0’1}11’

and the result follows from Theorem 2.2.



10

(3.4) Note. By similar methods, analogs of Lemma 2.2 and Note 2.4 can
also be given for BW-MSS's.

/17

4. FURTHER REMARKS

Stochastic versions of the results of the previous sections do not
necessarily hold even in the binary setting. However, an analog of
Proposition 3.1 can be obtained. We consider only the binary case al-
though similar results hold in the multistate case.

We let ¢ and ¥ be coherent BSS's of orders n and k respectively, and

compare the reliability functions,

By ey ByoeeoB) =E0(RZ,.. X))

and

. hw(‘i‘)(g ,..-,gk) -E¢(¢(_)El)’,“,¢(£‘))’

of the two competing coherent BSS's of order kxn defined in (1.4). Here

= (X xin) for i=1,...,k are independent random vectors of in-

By = Gy
dependent binary random variables, and _r;i = (pil" .e ’pin) for i=1,...,k

are defined by Pyg ™ 1’{)(ij =1},

We also let hq)(pl,...,pn) =E qs(xl,...,xn) (hw(ql,...,qk) =

Evy (Y Yk)) when X Xn (Yl,. . .,Yk) are independent binary random

'ERRRD) 170000
variables and pi-P{Xi-l} for i=1,...,n (qj'-l’{‘l:l =1} for j=1,...,k).

(4.1) Proposition.
(1) 1f ¢ is a parallel (series) BSS, then

X S




11

(4.2) h¢(¢’) (_P_la- .o ozk) = h¢(hw(P11:- ve ’pkl) s ’h,b(Pln:- oo apkn))

RN O ICNC PR A SOPPI ¢ SAPPORE S D

hw(¢)(P1’."’—k)
for all Pl,...,_ke 0,11" and any coherent BSS y.
(2) Conversely if for any coherent BSS y and some Pl, ..,_ke (o, 1) .

inequality (4.2) holds, then ¢ is a parallel (series) BSS.

Proof. (1) Follows from Proposition 3.1 by taking expectations.
(2) Taking Y(x) = max x, for x¢ {0,l}k, we have
1<i<k

)

)(P )(Pl’..',_k

By Baoes B ~ By,

R CTCTe AU SIETTETe HIPNRTe HPE

= E[(¢( max X,) - max ¢(X,)]1<0.
1<i<k * 1<i<k  +

Hence, -

<b(max_i

) = max ¢(x, ) for all x ,...,:_cke{o 1t
1<i<k

1<i<k T
and from Corollary 2.4 ¢ must be a parallel BSS.

The dual statement is proved similarly.
/11

It is easy to check that ¢ and ¥ are both parallel or series BSS's

if and only if we have equality in (4.2) for all P e [0, 11", 1t

1,...,_k

is not true however that if equality holds in (4.2) for some P1 e (0,1H"

N 1
then ¢ and y are both parallel or series BSS 's. An example of this last fact

can be constructed by simply taking ¢ and ¢ identical, but neither being a




12

parallel or series BSS, and taking gl,...,gke (0.1)n (k=n) such that

pij = pji for all i,j=1,...,n. It is obvious that this construction pro-

vides equality in (4.2). It i{s also easy to show that if equality holds

in (4.2) for some P. € (0,1)n and either ¢ or ¢ is parallel (series)

""’zk

then so is ¢ or ¢.
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